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Studies have been made on the effective thermal diffusivity in an extended vibra- 
tionally fluidized bed with or without a set of vertical tubes. 

Internal heat transfer occurs in an extended vibrationally fluidized bed, e.g., in a 
horizontal apparatus of boat type, and may be characterized from the effective thermal dif- 
fusivity [i]. If the bed contains bundles of vertical tubes to remove or supply heat [2], 
the large-scale circulation is conserved only in the transverse direction, which can tend to 
equalize the temperatures. Along the bed, the transport is mainly via small-scale fluctu- 
ations, so one can take the thermal conductivity as one-dimensional. A similar situation 
occurs without the inserts with developed vibrational fluidization. 

A nonstationary method has been used to examine the effective thermal diffusivity, 
which is based on the thermal conduction solution for an unbounded rod with a heat-transfer 
side surface and instantaneous heat sources distributed over a certain past [3]. The experi- 
ments were performed in a trough-type apparatus with dimensions 600 • Ii0 • 150 mm, made of 
thermally insulating material. The apparatus was divided lengthwise by a mobile baffle 
into two chambers: a hot one having length R = i00 mm and a cold one 500 mm long. The hot 
chamber was loaded with material heated to T* = 90-120~ while the temperature of the bed 
in the cold chamber was the environmental temperature T o . 

When the barrier was removed, the temperatures were recorded in three sections along 
the cold chamber at distances x = 130, 170, and 210 mm. Figure i shows typical results. The 
effective thermal diffusivity was determined from the time required to reach the maximum tem- 
perature. These values of a for the free layer or with the inserts were 1.3-13 • 10 -5 m2/sec 
and were larger by one or two orders of magnitude than the result for an immobile bed (a 0 - 
0.05 • 10 -5 m2/sec) because of the random motion. 

In general, a is dependent on various factors (A, ~0, d, H0, etc.), of which the most 
important is the vibrational frequency m0; a(m0) has a pronounced maximum. For example, with 
a bed 60 mm deep, the peak occurred at ~0m = 220 sec -z 

The effective thermal diffusivity is represented for theoretical purposes as 

a = ao@ D~ (too) (1)  

( f o r  oo4u D~(mo) ~0, a--+ao). 

D m is the temperature-diffusion coefficient and can be considered as the analog of the 
turbulent thermal diffusivity as determined by the rate of the small-scale random movements. 
A particle moving on a random path transports the temperature as a passive scalar trace com- 
ponent while exchanging heat with the environment. Then Dm can be determined from the theory 
of turbulent transport [4]. The autocorrelation function for the random particle velocities 
Rv(t) gives for sufficiently long times [4] that 

Do = i Rv(t)f(='Odt" (2)  
0 

The function f(~, t) incorporates the heat transfer between the particles and the environ- 
ment. If the behavior is coherent, (2) can be used for a group of particles, as has been 
done [5] for the thermal diffusivity in a fluidized bed. 
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Fig. I. Bed temperature T (~ as a 
function of time t (sec) in a vibra- 
tionally fluidized bed of electrocorun- 
dum having d = 0.16 mm and with a cor- 
ridor set of vertical tubes i0 mm in 
diameter placed with pitch s I -- s 2 = 20 
mm and used at f = 35 Hz with A = 0.8 mm 
for the following sections: i) x = 130 
mm; 2) 170; 3) 210. 

The heat transfer can be described in the relaxation approximation, where f(~,~ t) can 
be based on Burger's results as given in [4]: 

dT.  = a A T ,  f (~ ,  t ) = e x p  -~ t .  
dt 

(3) 

A cosine transformation Rv(t) = FV(~) is used with the substitution of (3) for f(~, t) into 
(2) to give 

D,o = 2 .! .f Fv (m) exp - ~ '  cos @t) doadt. 
o o 

Integration with respect to t gives 

i ~----~d~. (4) O~=2 F v @ ) ~ 2 q _ ~  
o 

To determine FV(m) , we use the equation of motion in projection on the horizontal x axis: 

mpx = P ~ + P ~ + P s .  (5) 

The forces on the right in (5) are: .Pi the dissipative resistance, which is taken as a linear 
function of the velocity, Pl = -2XmpX, where the resistance coefficient in general is a func- 
tion of frequency, X = X(m0); P2 the force due to the gas elasticity, as the pressure oscil- 

lates with frequency ~ [6], and in accordance with [7] P2 = -~2mpX; and P3 = mpfp the force 

representing the random action of the environment on the particle. 

The explicit forms of PI, P2, P3 give (5) in the coordinate and Fourier representations 
as 

x q- 2~x + Q~x = f~, (6) 

(7) 

An equation analogous to (6) describes a rheological model for a vibrationally fluidized bed 
if fp is a harmonic force [6]. One uses (6) and the complex conjugate with ensemble averaging 
by standard methods [8, 9] to get the spectral densities for the random displacements 
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and  velocities 

F v (~o) 
Fx (o3) = x o = (8 )  

Fv (~) = ~ZF~ (~). (9)  

Here Fp(~) = (fv~) 2 is the spectral density of the random force, which is constant for white 
noise. Then (8) and (9) describe the frequency spectra for a Brownian oscillator [8]. 

Assumptions [5, i0] on the random forces in a fluidized bed lead to results confirmed 
by experiment. As we lack information on such forces on a particle in a vibrational bed, we 
follow [5] and assume that these are random pulses f p ( t ) = E b ~ F ( t ~ t ~ )  and if elastic interac- 

tions predominate, fp(t) will be a narrow-band random process whose spectrum can [ii] be 
put as 

Fp(o)  = 1 A F ( 1 0 )  
2 (~--~0)~+r2 

We substitute (9) and (i0) into (4) to get 

D~ = AaF -[ 
o) 2do) 

"0 [(0)2 __ ~Q2)2 + 4k%o~] [((o - -  %)2 -5 F 2] ( C'2 + ~2) 

If there is little attenuation in the force pulses acting on a particle, 
enables one to use the asymptote [12] 

(11) 

F<<o0 , which 

Then (Ii) and (12) give 

-1 F (12) 
6 (o~ co0) 

~ A a ~  (13) 
Do = [ (~  _ f12) .4_ 4~o~]  (m~ + =~) ' 

in which k~ = X ( ~ o ) .  

If the width D~(~0) is small, as is observed (Fig. 2), the peak in D~ lies near ~ [12], 
so we put ~0m = ~, and then the maximal thermal diffusivity D~(~0m) = D~m , with (13) gives 

in which % m = Xm(~0m). 
transform (13) to 

nAa = 4)~ (o)2om + a 2) D~m, 

We use this with ~ = ~0/o0~, y----al~0m , no = C00ml2~ ~, • c,)0~12~m, to 

Do ._ (1 -~ y)gn 2 ( 1 4 )  
Do m [• (~2 _ 1)2 -I- (•215 (~2 _ ~2) 

We estimate X 2 in (14). For solid particles (corundum, d = 7"i0 -s m, 0p = 3.9-103 kg/m 3, 
Cp = 780 J/kg-K) exchanging heat with a gas (air, lqf = 2.6.10 -2' W/m.K), the time-constant 

2 I in (3) can [13] be put as a = 12Xqf/(pcpd) and is approximately 20 sec-. That is larger 
by an order of magnitude than the-a cal~ulated from the heat-transfer coefficient in a blown 
vibrational layer [14]. As D~m occurs at ~nm - 200 sec -I, so ~2 = (=/~0m)2 = 0.01, so 72 in 
(14) can be neglected (72 << I). If the resistance coefficient is taken as independent of 
the vibrational frequency, • and (14) becomes 

Do • ~ 
= [ ~ ( ~ ~  i)2-k ~2] -x. ( 1 5 )  

Dora 
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Fig. 2. Dependence of Dm/D~m on q for a vibrated bed of 
electrocorundum: i) from (15); 2) d = 0.07 ~m; 3) 0.63 
(A : 1.0-1.2 ram). 

Fig. 3. Relaxation time r$ (sec) as a function of vibra- 
tion frequency f0 = m0/(2W) (Hz) in a free vibrationally 
excited bed: i) d = 1.25 mm; 2) 0.63; 3) 0.32; 4) 0.16; 
5) 0.07 (A = 0.6-1.2 mm), 

To test (14) and (15), one needs independent data on ~0 Such data are lacking, so one 
employs semiempirical formulas such as the Ergan and Kozeni-Karman ones or other suitable 
relationships [13, 15-17]. 

Figure 2 shows for example that particles 0.07 mm in diameter give the best agreement 
with experiment for resistance coefficients given by [15] 

2k~ = 18~Ps �9 (~), 
dZpp 

i n  w h i c h  q~ (~) = 1 -t- 3/2 (1 ~e )~ /=  -t- 9/4 (1 - -  a)2/a _{_ 15/8(1 - -~) ,  
0 . 6 3  mm, f r o m  [17]  f o r  Re < 10:  

while for particles with diameter 

24 (17) 2 k ~ = - -  
~e 8 3` 75 

As the resistance coefficients from (16) and (17)-differ little, the (15) formulas for 0.07 
and 0.63 mm diameters almost coincide, so a single curve is shown in Fig. 2, which also shows 
that the relative diffusion coefficients here D~/Dmm are almost independent of particle dia- 
meter. The measured points 2 and 3 in Fig. 2 for the calculated curve 1 well~ so this con- 
cept on the thermal diffusivity in terms of D e defined by the small-scale random motion is 
justified. 

Heat transfer between the particles and the environment is not incorporated in (15) 
because ~2 is small. However, in the analytic description of the thermal diffusivity in 
such abed, neglecting the internal heat transfer may mean that the measured a for the various 
x differ considerably, so one assumes that the random motion in an elementary volume with 
characteristic scale L >> d, and having temperature T entrains particles with a different tem- 
peratures, which gives internal heat transfer, which may be considered as relaxation to the 
equilibrium temperature T(e) [18]. 

We used the [19] method to describe the therma!conduction. We introduce $, which char- 
acterizes the disequilibrium: y~=(@~O)=]/T(e)'-I/T. 

We make the usual assumption [20] that the entropy is dependent on the internal energy 
u and on $, s = s[u(t), $(t)] with the standard quadratic formula 

i a% k (18)  

2 - t   2j,=o 
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We differentiate (18) withrespect to time and use (as/au) (e) = 0 to get the rate of change 
in entropy per unit volume: 

os -- o p . - -  ph~. 

We determine p6 and pw from the balance equations 

pu -= --q:,~:, 9s'= --ox,xT(~) T~ a(~) 

(19)  

(20)  

(the cor~a denotes differentiation with respect to x) and substitute into (19) to get entropy 
production o(s): 

~(~) = q=O,x - -  (0  - -  ~) qx, x - -  Phi l ,  ( 2 1 )  

or from the definition of 

Linear phenomenological laws and Fourier representations of them follow from (22): 

(22)  

qx = Lqq6),x, qo~x ~ L~qO~.x. (23)  

(24) 

.~ L~ 

in which the relaxation time ~ is defined by ph/L~ = ~, while the phenomenological coef- 
ficients for the thermal conductivity Lqq and relaxation L~ are taken as known. 

To calculate h in (18), we use an expression for the entropy of a nonequilibrium system: 

p s =  0s(~)q-pclnlO--V~l  + yp___f_c ~. (25)  
O 

The first term in (25) corresponds to reversible transition between states having temper- 
atures T(e) and T, and the second to the uncompensated heat [21]. At equilibrium (~ = 0), 
the entropy is maximal, so (~s/B~)~ = 0 =0 implies 

9c7 z ( Ozs ] = p h _  (26)  
--P\ O~ ~ /~=o 02 ' 

with h = const during the relaxation. 

Then (20) gives 

pc 
@2 - - - -  ( 0 - -  y~) ~- qx,x. ( 2 7 )  

We transfer to Fourier components in (27) and use (26) to get 

,oh (28)  
y---T--. ( i~eo,  - -  ioJy~o~) = q,,,x,x. 

We u s e  q~x f r o m  (23)  in  (28)  and  u s e  (24 )  t o  e l i m i n a t e  ~ t o  g e t  up t o  t e r m s  i n  ~2 t h a t  

oh [i~0~ + (i~) 2 ~0~1 = LqqO~,x,x 
~2 

We t r a n s f e r  t o  t h e  o r i g i n a l s  i n  (29 )  and t a k e  O-~-I /T(e)~-I /T,  
effective thermal conductivity: 

OT 02T 02T 
~ -  = a .- (30)  

a t  ~-T~ ot  ~ Ox 2 .  

(29)  

to write the equation for the 

462 



Here we have used ~::9h/L~-----pc?2/(O2Lt); a:~/ (pc)=Lqq/(F2pc) .  (30) is used also to describe 
the thermal conduction in a fluidized bed [22]. In dimensionless form, (30) is 

aT + O2__~T _ a@ (31) 
O~ O~ 2 OX ~ '  

in which 

T=T(x' t ) - - T o  . 
, �9 = t/~; x = x/-V~. 

T* -- T O 

The boundary-value problem for the working conditions can be put as 

0 < x < R :  T(O, x)=: T*, T(O, X)----I, aT((),at x) afo~ = o; 

R<x<oo :  T(0, x)=To, T(0, X)--,0, or(o,at x) _ O'FO~ :-0; 

t, ~>0: T(t, R - - O ) = T ( t ,  R+O),  7"(T, XR--0)=T('c, X~+0), 
Xn = R/V~a~c~ , 

aT (t, o) _ a9 (.c, o) 
Ox 

OT I aT] 
Ox - 0; --bY-t~-o = --37-R+o'  

aT _ a~  / 
8X x a - o  8X lxR +~ 

Operational solution of (31) and (32) gives the transform T -'T, which is 

(32) 

= I 
T . . . . . .  {exp[--Vp(p-}-  1 ) ( x - - x R ) ] - - e x p [ - - l / p ( p @  1)"(x + x~)]}.  

2p 

Inverting this transform gives [23] 

(33) 

T(x, t)= exp(--X/2)sh(@_ 

T 

X -t- XR i" exp (--!]/2) 
d 

4 x+x R z(+)y 

& ( z,-)(v) ) 

X - - X ~  i' exp (--j/2) ""---2--'d/]-- 
4 x_~xa z~-) (y) 

[~ (, z(+)2 @) ] dy 
(34) 

in which 

z(-) (v) = V ~2 _ (x -- XR)~ ; z(+> = Vv 2 - (x + xR)2. 

The maximum condition for (34) gives 

t / ,, ) 
- -  ] ~c;~ - - ( X - -  XRp (x - x~) & ( 2 

F 2 T.~ -- (X -- XR)2 

(' 1 V ~ (X§ ( X §  ,~- ~,~-- 
(3s) 

which can be used to determine nne relaxation time, if one measures the time taken to attain 
the maximum temperature in a given section. 
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Figure 3 shows the relaxation time as a function of m0 from (35) for a free vibrational- 
ly excited bed, with a determined by experiment for the most remote section (the values of a 
for the two remote sections differed by an amount less than the error of experiment). Relaxa- 
tion becomes more important as the particle diameter and vibrational frequency increase in 
the ranges used, so under certain conditions, the internal heat transfer should be described 
by (30) or (31). 

The times t m to attain the maximum temperature for sections at 170 and 210 mm in the 
free vibrationally excited bed were greater than ~$, and the same applied to all the sections 
in the bed with tubes, so the method of determining the thermal diffusivity [3] from an ordi- 
nary parabolic equation is correct, although this does not mean that with rapid processes in 
a free vibrationally excited bed or in the presence of obstacles, it may not be necessary to 
use the hyperbolic equation. 

NOTATION 

T*, initial bed temperature; To, environmental temperature; Tp, particle temperature; 

T (e), equilibrium temperature; T, dimensionless temperature; 8 , and ~, reciprocals of the 
current and dimensionless temperatures correspondingly; A vibration amplitude; m0, vibration 
frequency; ~, gas oscillation frequency; H0, bed height; d, particle diameter; g, accelera- 
tion due to gravity; a0, and a, thermal diffusivities of immobile bed and effective value 
correspondingly; D~, analog of the turbulent thermal diffusivity coefficient; ~qf, gas thermal 

conductivity; v, gas kinematic viscosity; pf, pp, and p, densities of gas, particles, and bed 
correspondingly; ~, bed porosity; mp, particle mass; Pm, P2, and P3, forces acting on a 
particle; fp, perturbing force per Kg of solid; Cp, specific heat of particle material; %, 
resistance coefficient; u, internal energy; s~entropy; j(s), entropy flux; o(s), entropy pro- 
duction; q, heat flux density; Lqq, and L~, phenomenological coefficients for thermal con- 

duction and relaxation correspondingly; $, relaxation parameter; ~$, relaxation time, ~, 
time-constant; x and X, dimensional and dimensionless coordinates correspondingly; t and ~, 
dimensional and dimensionless time correspondingly; Rv(t) , random-velocity autocorrelation 
function; FV(~) , Fx(m) spectral densities for random particle velocities and displacements 
correspondingly; 11(z) , Bessel function; 6(~ - ~0) Dirac $ function; Re = ~0d2/v Reynolds 
number. A subscript m relates to the maximal value of the quantity. 
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DIFFUSION APPROXIMATION FOR FLUIDIZED-BED COAL COMBUSTION 

A. I. Tamarin and L. I. Levental' UDC 662.61:66.096.5 

A one-dimensional model has been constructed for stationary coal combustion, which 
is based on equations for the oxidant balance in the continuous and discrete phases 
together with the energy conservation equation for the burning particles in the 
fluidized bed. The model has been identified from measurements and parameters; 
have been determined such as the mean particle size, the activation energy, and 
the gas and solid transport coefficients. 

A fluidized-bed furnace opens up good economic prospects because it can burn a wide range 
of fuels efficiently while meeting tightening specifications on pollutant discharge. In such 
a furnace, the coal particles burn in an inhomogeneous fluidized bed of noncombustible mate- 
rial (the large fraction from the ash residue). On a two-phase model, an upward gas flow is 
necessary to start the fluidization, which breaks through as bubbles (discrete phase). The 
model concepts are fruitful and enable one to analyze commercial catalytic fluidized-bed 
reactors in which relatively slow heterogeneous reactions occur [i]. With a fast reaction, 
such as the combustion of solid fuel in a fluized bed, the model requires refinement. It 
has been suggested [2] that the gas bubbles are partially filled with burning particles and 
that the oxidation occurs in both phases. 

A jet model is used for the combustion of coal having a high volatile content and enter- 
ing the fluidized bed through the gas-distributing grid. The volatiles rapidly released from 
the fuel form combustible-gas jets at the grid, while the oxygen from the continuous phase 
diffuses to the jet boundaries [i]. 

A two-continuummodel may be used to describe solid-fuel combustion in a fluidized bed 
composed of relatively coarse material, in which it is assumed that the entire gas flow is in 
contact with the solid and that no gas bubbles break through [3]. 

Here we present a three-continmmnmodel. The bed consists of finely divided material 
(solid) suspended by the gas together with the gas, while in turn, the gas flow is divided 
into two continuous ones in accordance with the two-phase hydrodynamic fluidization theory: 
one is the gas passing through the channels between the grains (continuous phase) and the 
second is the gas in bubbles (discrete phase). A system of one-dimensional stationary non- 
linear balance equations is formulated. The task if first simplified somewhat on the basis 
that the granular material mixes rapidly and therefore the burning-particle concentration and 
temperature remain virtually constant and are independent of the depth. One can therefore 
assume that the combustion rate does not vary with depth. 

We write the conservation equation for the oxidant in the continuous and discrete phases: 

k~Y" 
N - -1  

r '  - B ~ f t , c  + P n  ( z  d - Y) -= o, 

}d  + P J7 (Yd -- Y) = o, 

(I) 

( 2 )  
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